272 research outputs found

    Conformal approach to cylindrical DLA

    Full text link
    We extend the conformal mapping approach elaborated for the radial Diffusion Limited Aggregation model (DLA) to the cylindrical geometry. We introduce in particular a complex function which allows to grow a cylindrical cluster using as intermediate step a radial aggregate. The grown aggregate exhibits the same self-affine features of the original cylindrical DLA. The specific choice of the transformation allows us to study the relationship between the radial and the cylindrical geometry. In particular the cylindrical aggregate can be seen as a radial aggregate with particles of size increasing with the radius. On the other hand the radial aggregate can be seen as a cylindrical aggregate with particles of size decreasing with the height. This framework, which shifts the point of view from the geometry to the size of the particles, can open the way to more quantitative studies on the relationship between radial and cylindrical DLA.Comment: 16 pages, 8 figure

    Viscoelasticity near the gel-point: a molecular dynamics study

    Full text link
    We report on extensive molecular dynamics simulations on systems of soft spheres of functionality f, i.e. particles that are capable of bonding irreversibly with a maximum of f other particles. These bonds are randomly distributed throughout the system and imposed with probability p. At a critical concentration of bonds, p_c approximately equal to 0.2488 for f=6, a gel is formed and the shear viscosity \eta diverges according to \eta ~ (p_c-p)^{-s}. We find s is approximately 0.7 in agreement with some experiments and with a recent theoretical prediction based on Rouse dynamics of phantom chains. The diffusion constant decreases as the gel point is approached but does not display a well-defined power law.Comment: 4 pages, 4 figure

    Dynamic Scaling of Width Distribution in Edwards--Wilkinson Type Models of Interface Dynamics

    Full text link
    Edwards--Wilkinson type models are studied in 1+1 dimensions and the time-dependent distribution, P_L(w^2,t), of the square of the width of an interface, w^2, is calculated for systems of size L. We find that, using a flat interface as an initial condition, P_L(w^2,t) can be calculated exactly and it obeys scaling in the form _\infty P_L(w^2,t) = Phi(w^2 / _\infty, t/L^2) where _\infty is the stationary value of w^2. For more complicated initial states, scaling is observed only in the large- time limit and the scaling function depends on the initial amplitude of the longest wavelength mode. The short-time limit is also interesting since P_L(w^2,t) is found to closely approximate the log-normal distribution. These results are confirmed by Monte Carlo simulations on a `roof-top' model of surface evolution.Comment: 5 pages, latex, 3 ps figures in a separate files, submitted to Phys.Rev.

    The inelastic Takahashi hard-rod gas

    Full text link
    We study a one-dimensional fluid of hard-rods interacting each other via binary inelastic collisions and a short ranged square-well potential. Upon tuning the depth and the sign of the well, we investigate the interplay between dissipation and cohesive or repulsive forces. Molecular dynamics simulations of the cooling regime indicate that the presence of this simple interparticle interaction is sufficient to significantly modify the energy dissipation rates expected by the Haff's law for the free cooling. The simplicity of the model makes it amenable to an analytical approach based on the Boltzmann-Enskog transport equation which allows deriving the behaviour of the granular temperature. Furthermore, in the elastic limit, the model can be solved exactly to provide a full thermodynamic description. A meaningful theoretical approximation explaining the properties of the inelastic system in interaction with a thermal bath can be directly extrapolated from the properties of the corresponding elastic system, upon a proper re-definition of the relevant observables. Simulation results both in the cooling and driven regime can be fairly interpreted according to our theoretical approach and compare rather well to our predictions.Comment: 14 pages RevTex, 9 eps figure

    Phase transitions in the q-voter model with two types of stochastic driving

    Full text link
    In this paper we study nonlinear qq-voter model with stochastic driving on a complete graph. We investigate two types of stochasticity that, using the language of social sciences, can be interpreted as different kinds of nonconformity. From a social point of view, it is very important to distinguish between two types nonconformity, so called anti-conformity and independence. A majority of works suggests that these social differences may be completely irrelevant in terms of microscopic modeling that uses tools of statistical physics and that both types of nonconformity play the role of so called 'social temperature'. In this paper we clarify the concept of 'social temperature' and show that different type of 'noise' may lead to qualitatively different emergent properties. In particularly, we show that in the model with anti-conformity the critical value of noise increases with parameter qq, whereas in the model with independence the critical value of noise decreases with the qq. Moreover, in the model with anti-conformity the phase transition is continuous for any value of qq, whereas in the model with independence the transition is continuous for q5q \le 5 and discontinuous for q>5q>5

    Phase separation in fluids exposed to spatially periodic external fields

    Full text link
    We consider the liquid-vapor type phase transition for fluids confined within spatially periodic external fields. For a fluid in d=3 dimensions, the periodic field induces an additional phase, characterized by large density modulations along the field direction. At the triple point, all three phases (modulated, vapor, and liquid) coexist. At temperatures slightly above the triple point and for low (high) values of the chemical potential, two-phase coexistence between the modulated phase and the vapor (liquid) is observed. We study this phenomenon using computer simulations and mean-field theory for the Ising model. The theory shows that, in order for the modulated phase to arise, the field wavelength must exceed a threshold value. We also find an extremely low tension of the interface between the modulated phase and the vapor/liquid phases. The tension is of the order 10^{-4} kB T per squared lattice spacing, where kB is the Boltzmann constant, and T the temperature. In order to detect such low tensions, a new simulation method is proposed. We also consider the case of d=2 dimensions. The modulated phase then does not survive, leading to a radically different phase diagram.Comment: 11 pages, 14 figure

    Critical dynamics of nonconserved NN-vector model with anisotropic nonequilibrium perturbations

    Full text link
    We study dynamic field theories for nonconserving NN-vector models that are subject to spatial-anisotropic bias perturbations. We first investigate the conditions under which these field theories can have a single length scale. When N=2 or N4N \ge 4, it turns out that there are no such field theories, and, hence, the corresponding models are pushed by the bias into the Ising class. We further construct nontrivial field theories for N=3 case with certain bias perturbations and analyze the renormalization-group flow equations. We find that the three-component systems can exhibit rich critical behavior belonging to two different universality classes.Comment: Included RG analysis and discussion on new universality classe
    corecore